Click to View Post Navigation
Abstract
Purpose
Although bioabsorbable screws promise to degrade within months up to several years after implantation, often this does not happen. In fact, other problems such as screw breakage, tunnel enlargement, allergic or foreign body reactions, cyst or abscess formation, and delayed migration of “biodegradable” screws have been reported. This study aims to provide relevant basic science knowledge and recent insights concerning “biomaterials” currently used in fixation devices for anterior cruciate ligament (ACL) repair. A systematic review on the topic of screw “migration” is provided.
Methods
A PubMed search combining all the key terms was done looking for complications related to late migration of “bioabsorbable” screws used in ACL reconstruction without inferior time limitation up to January 2012. Only clinical reports were included. Reference lists of reports were checked to detect others not identified by the original search. A pre-publication search was performed to identify the most recent relevant articles.
Results
A total of ten articles referred to migration of “bioabsorbable” interference screws. Most cases reported on poly-L-lactic acid-based screws. Migration was noticed between 3 and 22 months postoperatively. It was noticed both in the tibia and the femur and with the application of several types of graft.
Conclusion
Migration is a possible complication of “bioabsorbable” interference screws. The information related to all clinical implications of the so-called “biodegradable screws” remains scarce and probably suffers from the phenomenon of publication bias. The complexity of possible reactions occurring in the human body is difficult to reproduce under controlled laboratory conditions.
Level of evidence
Systematic review including case-reports, Level V.
This is a preview of subscription content, access via your institution.
Access options
Buy single article
Instant access to the full article PDF.
39,95 €
Price includes VAT (Vietnam)
References
-
Antunes JC, Oliveira JM, Reis RL, Soria JM, Gomez-Ribelles JL, Mano JF (2010) Novel poly(L-lactic acid)/hyaluronic acid macroporous hybrid scaffolds: characterization and assessment of cytotoxicity. J Biomed Mater Res A 94(3):856–869
-
Bach FD, Carlier RY, Elis JB, Mompoint DM, Feydy A, Judet O, Beaufils P, Vallee C (2002) Anterior cruciate ligament reconstruction with bioabsorbable polyglycolic acid interference screws: MR imaging follow-up. Radiology 225(2):541–550
-
Barber FA, Elrod BF, McGuire DA, Paulos LE (1995) Preliminary results of an absorbable interference screw. Arthroscopy 11(5):537–548
-
Baums MH, Zelle BA, Schultz W, Ernstberger T, Klinger HM (2006) Intraarticular migration of a broken biodegradable interference screw after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 14(9):865–868
-
Benedetto KP, Fellinger M, Lim TE, Passler JM, Schoen JL, Willems WJ (2000) A new bioabsorbable interference screw: preliminary results of a prospective, multicenter, randomized clinical trial. Arthroscopy 16(1):41–48
-
Bostman O, Hirvensalo E, Makinen J, Rokkanen P (1990) Foreign-body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Joint Surg Br 72(4):592–596
-
Bottoni CR, Deberardino TM, Fester EW, Mitchell D, Penrod BJ (2000) An intra-articular bioabsorbable interference screw mimicking an acute meniscal tear 8 months after an anterior cruciate ligament reconstruction. Arthroscopy 16(4):395–398
-
Drogset JO, Grontvedt T, Myhr G (2006) Magnetic resonance imaging analysis of bioabsorbable interference screws used for fixation of bone-patellar tendon-bone autografts in endoscopic reconstruction of the anterior cruciate ligament. Am J Sports Med 34(7):1164–1169
-
Drogset JO, Straume LG, Bjorkmo I, Myhr G (2011) A prospective randomized study of ACL-reconstructions using bone-patellar tendon-bone grafts fixed with bioabsorbable or metal interference screws. Knee Surg Sports Traumatol Arthrosc 19(5):753–759
-
Emond CE, Woelber EB, Kurd SK, Ciccotti MG, Cohen SB (2011) A comparison of the results of anterior cruciate ligament reconstruction using bioabsorbable versus metal interference screws: a meta-analysis. J Bone Joint Surg Am 93(6):572–580
-
Ferguson S, Wahl D, Gogolewski S (1996) Enhancement of the mechanical properties of polylactides by solid-state extrusion. II. Poly(L-lactide), poly(L/D-lactide), and poly(L/DL-lactide). J Biomed Mater Res A 30(4):543–551
-
Fink C, Benedetto KP, Hackl W, Hoser C, Freund MC, Rieger M (2000) Bioabsorbable polyglyconate interference screw fixation in anterior cruciate ligament reconstruction: a prospective computed tomography-controlled study. Arthroscopy 16(5):491–498
-
Friden T, Rydholm U (1992) Severe aseptic synovitis of the knee after biodegradable internal fixation. A case report. Acta Orthop Scand 63(1):94–97
-
Garrett WEJ, Swiontkowski MF, Weinstein JN, Callaghan J, Rosier RN, Berry DJ, Harrast J, Derosa GP (2006) American Board of Orthopaedic Surgery Practice of the Orthopaedic Surgeon: Part-II, certification examination case mix. J Bone Joint Surg Am 88(3):660–667
-
Gilding DK, Reed AM (1979) Biodegradable polymers for use in surgery – polyglycolic/poly (lactic acid) homo- and copolymers: 1. Polymer 20(12):1459–1464
-
Gobbi A, Francisco R (2006) Factors affecting return to sports after anterior cruciate ligament reconstruction with patellar tendon and hamstring graft: a prospective clinical investigation. Knee Surg Sports Traumatol Arthrosc 14(10):1021–1028
-
Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 20(5):1–16
-
Halewood C, Hirschmann MT, Newman S, Hleihil J, Chaimski G, Amis AA (2011) The fixation strength of a novel ACL soft-tissue graft fixation device compared with conventional interference screws: a biomechanical study in vitro. Knee Surg Sports Traumatol Arthrosc 19(4):559–567
-
Hall MP, Hergan DM, Sherman OH (2009) Early fracture of a bioabsorbable tibial interference screw after ACL reconstruction with subsequent chondral injury. Orthopedics 32(3):208
-
Jarvela T, Moisala AS, Sihvonen R, Jarvela S, Kannus P, Jarvinen M (2008) Double-bundle anterior cruciate ligament reconstruction using hamstring autografts and bioabsorbable interference screw fixation: prospective, randomized, clinical study with 2-year results. Am J Sports Med 36(2):290–297
-
Konan S, Haddad FS (2009) A clinical review of bioabsorbable interference screws and their adverse effects in anterior cruciate ligament reconstruction surgery. Knee 16(1):6–13
-
Konan S, Haddad FS (2009) The unpredictable material properties of bioabsorbable PLC interference screws and their adverse effects in ACL reconstruction surgery. Knee Surg Sports Traumatol Arthrosc 17(3):293–297
-
Konan S, Haddad FS (2010) Femoral fracture following knee ligament reconstruction surgery due to an unpredictable complication of bioabsorbable screw fixation: a case report and review of literature. J Orthop Traumatol 11(1):51–55
-
Kontakis GM, Pagkalos JE, Tosounidis TI, Melissas J, Katonis P (2007) Bioabsorbable materials in orthopaedics. Acta Orthop Belg 73(2):159–169
-
Krappel FA, Bauer E, Harland U (2006) The migration of a BioScrew as a differential diagnosis of knee pain, locking after ACL reconstruction: a report of two cases. Arch Orthop Trauma Surg 126(9):615–620
-
Lajtai G, Humer K, Aitzetmuller G, Unger F, Noszian I, Orthner E (1999) Serial magnetic resonance imaging evaluation of a bioabsorbable interference screw and the adjacent bone. Arthroscopy 15(5):481–488
-
Lajtai G, Noszian I, Humer K, Unger F, Aitzetmuller G, Orthner E (1999) Serial magnetic resonance imaging evaluation of operative site after fixation of patellar tendon graft with bioabsorbable interference screws in anterior cruciate ligament reconstruction. Arthroscopy 15(7):709–718
-
Lam CXF, Olkowski R, Swieszkowski W, Tan KC, Gibson I, Hutmacher DW (2008) Mechanical and in vitro evaluations of composite PLDLLA/TCP scaffolds for bone engineering. Virtual Phys Prototyping 3(4):193–197
-
Lembeck B, Wulker N (2005) Severe cartilage damage by broken poly-L-lactic acid (PLLA) interference screw after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 13(4):283–286
-
Ma CB, Francis K, Towers J, Irrgang J, Fu FH, Harner CH (2004) Hamstring anterior cruciate ligament reconstruction: a comparison of bioabsorbable interference screw and endobutton-post fixation. Arthroscopy 20(2):122–128
-
Macarini L, Murrone M, Marini S, Mocci A, Ettorre GC (2004) MRI in ACL reconstructive surgery with PDLLA bioabsorbable interference screws: evaluation of degradation and osteointegration processes of bioabsorbable screws. Radiol Med 107(1–2):47–57
-
Macdonald P, Arneja S (2003) Biodegradable screw presents as a loose intra-articular body after anterior cruciate ligament reconstruction. Arthroscopy 19(6):E22–E24
-
Maletis GB, Cameron SL, Tengan JJ, Burchette RJ (2007) A prospective randomized study of anterior cruciate ligament reconstruction: a comparison of patellar tendon and quadruple-strand semitendinosus/gracilis tendons fixed with bioabsorbable interference screws. Am J Sports Med 35(3):384–394
-
Malhan K, Kumar A, Rees D (2002) Tibial cyst formation after anterior cruciate ligament reconstruction using a new bioabsorbable screw. Knee 9(1):73–75
-
Martinek V, Friederich NF (1999) Tibial and pretibial cyst formation after anterior cruciate ligament reconstruction with bioabsorbable interference screw fixation. Arthroscopy 15(3):317–320
-
Middelton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346
-
Moisala AS, Jarvela T, Paakkala A, Paakkala T, Kannus P, Jarvinen M (2008) Comparison of the bioabsorbable and metal screw fixation after ACL reconstruction with a hamstring autograft in MRI and clinical outcome: a prospective randomized study. Knee Surg Sports Traumatol Arthrosc 16(12):1080–1086
-
Pena F, Grontvedt T, Brown GA, Aune AK, Engebretsen L (1996) Comparison of failure strength between metallic and absorbable interference screws. Influence of insertion torque, tunnel-bone block gap, bone mineral density, and interference. Am J Sports Med 24(3):329–334
-
Piltz S, Strunk P, Meyer L, Plitz W, Lob G (2004) Fixation strength of a novel bioabsorbable expansion bolt for patellar tendon bone graft fixation: an experimental study in calf tibial bone. Knee Surg Sports Traumatol Arthrosc 12(5):376–383
-
Radford MJ, Noakes J, Read J, Wood DG (2005) The natural history of a bioabsorbable interference screw used for anterior cruciate ligament reconstruction with a 4-strand hamstring technique. Arthroscopy 21(6):707–710
-
Robinson J, Huber C, Jaraj P, Colombet P, Allard M, Meyer P (2006) Reduced bone tunnel enlargement post hamstring ACL reconstruction with poly-L-lactic acid/hydroxyapatite bioabsorbable screws. Knee 13(2):127–131
-
Sassmannshausen G, Carr CF (2003) Transcutaneous migration of a tibial bioabsorbable interference screw after anterior cruciate ligament reconstruction. Arthroscopy 19(9):E133–E136
-
Sassmannshausen G, Sukay M, Mair SD (2006) Broken or dislodged poly-L-lactic acid bioabsorbable tacks in patients after SLAP lesion surgery. Arthroscopy 22(6):615–619
-
Shafer BL, Simonian PT (2002) Broken poly-L-lactic acid interference screw after ligament reconstruction. Arthroscopy 18(7):E35
-
Sharma V, Curtis C, Micheli L (2008) Extra-articular extraosseous migration of a bioabsorbable femoral interference screw after ACL reconstruction. Orthopedics 31(10):1040
-
Shen C, Jiang SD, Jiang LS, Dai LY (2010) Bioabsorbable versus metallic interference screw fixation in anterior cruciate ligament reconstruction: a meta-analysis of randomized controlled trials. Arthroscopy 26(5):705–713
-
Södergård A, Stolt M (2002) Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci 27(6):1123–1163
-
Song F, Parekh S, Hooper L, Loke YK, Ryder J, Sutton AJ, Hing C, Kwok CS, Pang C, Harvey I (2010) Dissemination and publication of research findings: an updated review of related biases. Health Technol Assess 14(8):iii, ix–xi 1–193
-
Stahelin AC, Weiler A, Rufenacht H, Hoffmann R, Geissmann A, Feinstein R (1997) Clinical degradation and biocompatibility of different bioabsorbable interference screws: a report of six cases. Arthroscopy 13(2):238–244
-
Tecklenburg K, Burkart P, Hoser C, Rieger M, Fink C (2006) Prospective evaluation of patellar tendon graft fixation in anterior cruciate ligament reconstruction comparing composite bioabsorbable and allograft interference screws. Arthroscopy 22(9):993–999
-
Thaunat M, Nourissat G, Gaudin P, Beaufils P (2006) Tibial plateau fracture after anterior cruciate ligament reconstruction: Role of the interference screw resorption in the stress riser effect. Knee 13(3):241–243
-
Walsh WR, Cotton NJ, Stephens P, Brunelle JE, Langdown A, Auld J, Vizesi F, Bruce W (2007) Comparison of poly-L-lactide and polylactide carbonate interference screws in an ovine anterior cruciate ligament reconstruction model. Arthroscopy 23(7):757–765
-
Warden WH, Chooljian D, Jackson DW (2008) Ten-year magnetic resonance imaging follow-up of bioabsorbable poly-L-lactic acid interference screws after anterior cruciate ligament reconstruction. Arthroscopy 24(3):370.e1–370.e3
-
Weiler A, Helling HJ, Kirch U, Zirbes TK, Rehm KE (1996) Foreign-body reaction and the course of osteolysis after polyglycolide implants for fracture fixation: experimental study in sheep. J Bone Joint Surg Br 78(3):369–376
-
Werner A, Wild A, Ilg A, Krauspe R (2002) Secondary intra-articular dislocation of a broken bioabsorbable interference screw after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 10(1):30–32
Rights and permissions
About this article
Cite this article
Pereira, H.M.D., Correlo, V.M., Silva-Correia, J. et al. Migration of “bioabsorbable” screws in ACL repair. How much do we know? A systematic review. Knee Surg Sports Traumatol Arthrosc 21, 986–994 (2013). https://doi.org/10.1007/s00167-013-2414-2
-
Received:
-
Accepted:
-
Published:
-
Issue Date:
-
DOI: https://doi.org/10.1007/s00167-013-2414-2
Keywords
- ACL
- Bioabsorbable
- Interference screw
- Polylactic acid
- Polyglycolic acid
- Migration